V\u00ed d\u1ee5<\/strong>: \u0110\u1ec1 h\u00f4m th\u1ee9 nh\u1ea5t l\u00e0 AB, \u0110\u1ec1 h\u00f4m th\u1ee9 2 l\u00e0 CD.<\/p>\nTa x\u00e9t t\u1ed5ng \u0111\u1ec1 h\u00f4m th\u1ee9 nh\u1ea5t: A + B = M.<\/p>\n
T\u1ed5ng \u0111\u1ec1 h\u00f4m th\u1ee9 2: C + D = N.<\/p>\n
Ta x\u00e9t c\u00e1c tr\u01b0\u1eddng h\u1ee3p sau \u0111\u1ec3 soi c\u1ea7u l\u00f4 ch\u00ednh x\u00e1c 100%<\/strong>:<\/p>\n\nTr\u01b0\u1eddng h\u1ee3p 1<\/strong>: M < 10, N < 10. Ta l\u1ea5y hi\u1ec7u 10 \u2013 M = X, 10 \u2013 N = Y. Ta s\u1ebd soi c\u1ea7u l\u00f4 ch\u00ednh x\u00e1c 100% ng\u00e0y th\u1ee9 3 l\u00e0 XY.<\/li>\nTr\u01b0\u1eddng h\u1ee3p 2<\/strong>: M > 10, N < 10. Ta l\u1ea5y hi\u1ec7u 20 \u2013 M = X, 10 \u2013 N = Y. Ta s\u1ebd soi c\u1ea7u l\u00f4 ch\u00ednh x\u00e1c 100% ng\u00e0y th\u1ee9 3 l\u00e0 XY.<\/li>\nTr\u01b0\u1eddng h\u1ee3p 3<\/strong>: M > 10, N > 10. Ta l\u1ea5y hi\u1ec7u 20 \u2013 M = X, 20 \u2013 N = Y. Ta s\u1ebd soi c\u1ea7u l\u00f4 ch\u00ednh x\u00e1c 100% ng\u00e0y th\u1ee9 3 l\u00e0 XY.<\/li>\nTr\u01b0\u1eddng h\u1ee3p 4<\/strong>: M < 10, N > 10. Ta l\u1ea5y hi\u1ec7u 10 \u2013 M = X, 20 \u2013 N = Y. Ta s\u1ebd soi c\u1ea7u l\u00f4 ch\u00ednh x\u00e1c 100% ng\u00e0y th\u1ee9 3 l\u00e0 YX (tr\u01b0\u1eddng h\u1ee3p \u0111\u1eb7c bi\u1ec7t).<\/li>\n<\/ul>\nCh\u00fa \u00fd<\/strong>: N\u1ebfu t\u1ed5ng M, N l\u00e0 0 ho\u1eb7c 10 th\u00ec X, Y \u0111\u1ec1u l\u00e0 0 h\u1ebft.<\/p>\nV\u00ed d\u1ee5 1<\/strong>: \u0110\u1ec1 h\u00f4m th\u1ee9 nh\u1ea5t v\u1ec1 36, \u0111\u1ec1 h\u00f4m th\u1ee9 2 v\u1ec1 93.<\/p>\nT\u1eeb \u0111\u1ec1 hai h\u00f4m li\u00ean ti\u1ebfp ta t\u00ecm \u0111\u01b0\u1ee3c X = 10 -(3+6) =1. Y = 20 \u2013 (9+3) = 8.<\/p>\n
Ta th\u1ea5y \u0111\u00e2y thu\u1ed9c tr\u01b0\u1eddng h\u1ee3p 4 n\u00ean con l\u00f4 ng\u00e0y th\u1ee9 3 ta \u0111\u00e1nh 81.<\/p>\n
V\u00ed d\u1ee5 2<\/strong>: \u0110\u1ec1 h\u00f4m th\u1ee9 nh\u1ea5t v\u1ec1 74, \u0111\u1ec1 h\u00f4m th\u1ee9 2 v\u1ec1 85.<\/p>\nT\u1eeb k\u1ebft qu\u1ea3 \u0111\u1ec1 tr\u00ean ta t\u00ecm \u0111\u01b0\u1ee3c X = 20 \u2013 (7+4)= 9. Y = 20 \u2013 (8+5)= 7.<\/p>\n
N\u00ean ta t\u00ecm \u0111\u01b0\u1ee3c XY l\u00e0 97 \u0111\u1ec3 \u0111\u00e1nh l\u00f4 ng\u00e0y th\u1ee9 3.<\/p>\nPh\u01b0\u01a1ng Ph\u00e1p Soi C\u1ea7u L\u00f4 Ch\u00ednh X\u00e1c 100%<\/figcaption><\/figure>\nKhi n\u00e0o th\u00ec b\u1ea1n d\u00f9ng c\u00e1ch n\u00e0y \u0111\u1ec3 soi c\u1ea7u l\u00f4 ch\u00ednh x\u00e1c 100%:<\/strong><\/h3>\n <\/p>\n
\nC\u1ea7u n\u00e0y n\u1ebfu \u0111\u00e3 v\u1ec1 th\u01b0\u1eddng v\u1ec1 li\u00ean t\u1ee5c 3-4 ng\u00e0y.<\/li>\n N\u1ebfu \u0111\u00e1nh c\u1ea7u n\u00e0y kh\u00f4ng v\u1ec1, ngh\u1ec9 th\u00eam 1 h\u00f4m, n\u1ebfu c\u1ea7u ra \u0111\u00fang h\u00f4m ngh\u1ec9 th\u00ec b\u1ecf c\u1ea7u lu\u00f4n, n\u1ebfu kh\u00f4ng ra v\u00e0o h\u00f4m ngh\u1ec9 theo ti\u1ebfp c\u1ea7u s\u1ebd tr\u00fang.<\/li>\n N\u1ebfu \u0111\u00e1nh XY m\u00e0 v\u1ec1 YX ngh\u1ec9 3, 4 ng\u00e0y r\u1ed3i \u0111\u00e1nh l\u1ea1i c\u1ea7u n\u00e0y. \n=> C\u00e1c b\u1ea1n c\u1ea3m th\u1ea5y khi 5, 6 ng\u00e0y c\u1ea7u n\u00e0y kh\u00f4ng ra, ta b\u1eaft \u0111\u1ea7u \u0111\u00e1nh, n\u1ebfu kh\u00f4ng v\u1ec1 ngh\u1ec9 m\u1ed9t h\u00f4m r\u1ed3i \u0111\u00e1nh ti\u1ebfp 3 ng\u00e0y, ho\u1eb7c th\u1ea5y c\u1ea7u n\u00e0y ra \u0111\u00e1nh ti\u1ebfp h\u00f4m sau.<\/li>\n<\/ol>\nTr\u00ean \u0111\u00e2y l\u00e0 l\u00fd thuy\u1ebft c\u1ee7a c\u00e1ch soi c\u1ea7u l\u00f4 m\u1edbi nh\u1ea5t 2024 ch\u00ednh x\u00e1c 100%. Sau \u0111\u00e2y m\u00ecnh l\u1ea5y v\u00ed d\u1ee5 th\u1ef1c t\u1ebf cho c\u00e1c b\u1ea1n d\u1ec5 hi\u1ec3u v\u00e0 s\u1ef1 ch\u00ednh x\u00e1c c\u1ee7a n\u00f3.<\/p>\n
M\u00ecnh xin l\u1ea5y k\u1ebft qu\u1ea3 c\u1ee7a th\u00e1ng 1\/2024 l\u00e0m v\u00ed d\u1ee5 th\u1ef1c t\u1ebf c\u00e1ch v\u00e0o ti\u1ec1n c\u1ee7a m\u00ecnh cho c\u00e1c b\u1ea1n xem c\u00e1ch soi c\u1ea7u l\u00f4 ch\u00ednh x\u00e1c 100% hi\u1ec7u qu\u1ea3 nh\u01b0 th\u1ebf n\u00e0o:<\/p>\n
\n7\/1: \u0111\u00e1nh l\u00f4 41 tr\u00fang.<\/li>\n 8\/1: \u0111\u00e1nh l\u00f4 13 t\u1ea1ch.<\/li>\n 9\/1: ngh\u1ec9<\/li>\n 10\/1: \u0111\u00e1nh l\u00f4 81 tr\u00fang.<\/li>\n 11\/1: c\u1ea7u l\u1ea1i l\u00e0 l\u00f4 81 tr\u00f9ng v\u1edbi h\u00f4m tr\u01b0\u1edbc n\u00ean b\u1ecf.<\/li>\n 12\/1: \u0111\u00e1nh l\u00f4 12 tr\u00fang.<\/li>\n 13\/1: ngh\u1ec9 v\u00ec \u0111\u00e3 \u0111\u00e1nh c\u1ea7u n\u00e0y 3 ng\u00e0y sau ng\u00e0y ngh\u1ec9 9\/1.<\/li>\n 23\/1: c\u00e2u n\u00e0y b\u1eaft \u0111\u1ea7u v\u1ec1 l\u00f4 89.<\/li>\n 24\/1: \u0111\u00e1nh 80 t\u1ea1ch.<\/li>\n 6 ng\u00e0y ti\u1ebfp theo ko th\u1ea5y c\u1ea7u v\u1ec1, ng\u00e0y th\u1ee9 6 \u0111\u00e1nh<\/li>\n 29\/1: l\u00f4 19 tr\u00fang<\/li>\n 30\/1: l\u00f4 18 t\u1ea1ch<\/li>\n 31\/1: l\u00f4 78 tr\u00fang.<\/li>\n<\/ul>\nNh\u01b0 v\u1eady v\u1eadn d\u1ee5ng
soi c\u1ea7u l\u00f4 ch\u00ednh x\u00e1c 100%<\/strong> n\u00e0y trong 1 th\u00e1ng \u0111\u00e1nh 8 l\u1ea7n \u0111\u00e3 c\u00f3 5 l\u1ea7n tr\u00fang, 3 l\u1ea7n t\u1ea1ch. \u0110\u00e1nh b\u1ea1ch th\u1ee7 l\u00f4 nh\u01b0 th\u1ebf l\u00e0 qu\u00e1 l\u00e3i. C\u00e1ch soi c\u1ea7u l\u00f4 ch\u00ednh x\u00e1c 100%<\/strong> n\u00e0y th\u1ef1c s\u1ef1 r\u1ea5t hi\u1ec7u qu\u1ea3. \u0110\u00e2y l\u00e0 m\u1ed9t c\u00e1ch soi c\u1ea7u l\u00f4 \u0111\u1ed9c \u0111\u00e1o v\u00e0 c\u1ef1c ch\u00ednh x\u00e1c.<\/div>\n\n
Ch\u01a1i l\u00f4 \u0111\u1ec1 online c\u00f9ng chi\u1ebfn th\u1eafng h\u00e0ng ng\u00e0y<\/h2>\n L\u00f4 \u0111\u1ec1 online lu\u00f4n l\u00e0 s\u1ef1 kh\u1edfi \u0111\u1ea7u c\u1ee7a chi\u1ebfn th\u1eafng. Ch\u00fang ta s\u1ebd ch\u01a1i ngay tr\u00ean \u0111i\u1ec7n tho\u1ea1i di \u0111\u1ed9ng v\u00e0 n\u1ea1p r\u00fat ti\u1ec1n qua h\u00ecnh th\u1ee9c chuy\u1ec3n kho\u1ea3n ng\u00e2n h\u00e0ng \u0111\u01a1n gi\u1ea3n, ti\u1ec7n l\u1ee3i. C\u00f9ng v\u1edbi \u0111\u00f3, t\u1ef7 l\u1ec7 tr\u1ea3 th\u01b0\u1edfng 1 \u0103n 99<\/strong> ch\u1eafc ch\u1eafn s\u1ebd gi\u00fap ch\u00fang ta t\u0103ng l\u1ee3i nhu\u1eadn, l\u00e3i cao nh\u1ea5t.<\/p>\n<\/div>\n