- \n
- Pascal l\u00e0 g\u00ec?<\/li>\n
- C\u00e1ch t\u00ednh l\u00f4 \u0111\u1ec1 chu\u1ea9n theo quy lu\u1eadt Pascal<\/li>\n<\/ul>\n<\/div>\n
Pascal l\u00e0 g\u00ec?<\/b><\/h2>\n
- <\/dl>\n
- <\/em><\/dt>\n
- T\u00ednh l\u00f4 \u0111\u1ec1 theo quy lu\u1eadt Pascal<\/em><\/dd>\n<\/dl>\n
\u0110\u00e2y l\u00e0 m\u1ed9t ph\u01b0\u01a1ng ph\u00e1p d\u1ef1a tr\u00ean quy lu\u1eadt c\u1ee7a nh\u00e0 b\u00e1c h\u1ecdc n\u1ed5i ti\u1ebfng Newton \u2013 tam gi\u00e1c Pascal m\u1ed9t m\u1ea3ng tam gi\u00e1c c\u1ee7a c\u00e1c s\u1ed1 nh\u1ecb th\u1ee9c. Theo quy lu\u1eadt c\u1ee7a tam gi\u00e1c Pascal c\u00e1c h\u00e0ng c\u1ee7a tam gi\u00e1c s\u1ebd \u0111\u01b0\u1ee3c li\u1ec7t k\u00ea theo quy \u01b0\u1edbc b\u1eaft \u0111\u1ea7u b\u1eb1ng 1 s\u1ed1 duy nh\u1ea5t \u1edf h\u00e0ng tr\u00ean c\u00f9ng, m\u1ed7i s\u1ed1 c\u1ee7a h\u00e0ng ti\u1ebfp theo \u0111\u01b0\u1ee3c x\u00e2y d\u1ef1ng b\u1eb1ng c\u00e1ch th\u00eam s\u1ed1 \u1edf tr\u00ean v\u00e0 b\u00ean tr\u00e1i v\u00e0 s\u1ed1 \u1edf tr\u00ean b\u00ean ph\u1ea3i. V\u00e0 cu\u1ed1i c\u00f9ng 2 h\u00e0ng li\u1ec1n nhau \u0111\u01b0\u1ee3c \u0111\u1eb7t so le nhau.<\/p>\n
V\u1edbi c\u00e1ch t\u00ednh l\u00f4 theo quy lu\u1eadt Pascal chu\u1ea9n x\u00e1c n\u00e0y ng\u01b0\u1eddi ch\u01a1i c\u00f3 th\u1ec3 d\u1ec5 d\u00e0ng \u0111\u01b0a ra \u0111\u01b0\u1ee3c nh\u1eefng con l\u00f4 b\u1ea1ch th\u1ee7 v\u1edbi x\u00e1c su\u1ea5t tr\u00fang gi\u1ea3i cao. Theo c\u00e1c chuy\u00ean gia l\u00f4 \u0111\u1ec1, \u0111\u00e2y l\u00e0 ph\u01b0\u01a1ng ph\u00e1p soi c\u1ea7u l\u00f4 hi\u1ec7u qu\u1ea3, \u0111\u1ed9 an to\u00e0n cao n\u00ean \u0111\u01b0\u1ee3c kh\u00e1 nhi\u1ec1u ng\u01b0\u1eddi ch\u01a1i l\u00f4 \u0111\u1ec1 \u00e1p d\u1ee5ng.<\/p>\n
C\u00e1ch t\u00ednh l\u00f4 \u0111\u1ec1 chu\u1ea9n theo quy lu\u1eadt Pascal<\/b><\/h2>\n
C\u00e1ch t\u00ednh n\u00e0y kh\u00e1 \u0111\u01a1n gi\u1ea3n \u0111i\u1ec1u quan tr\u1ecdng \u0111\u00f2i h\u1ecfi ng\u01b0\u1eddi ch\u01a1i ph\u1ea3i c\u00f3 \u0111\u1ea7u \u00f3c t\u01b0 duy, t\u00ednh to\u00e1n c\u00f3 nh\u01b0 v\u1eady m\u1edbi \u0111\u01b0a ra \u0111\u01b0\u1ee3c c\u1eb7p l\u00f4 ch\u00ednh x\u00e1c nh\u1ea5t. V\u1ec1 c\u01a1 b\u1ea3n b\u1ea1n ch\u1ec9 c\u1ea7n x\u00e1c \u0111\u1ecbnh 1 d\u00e3y s\u1ed1 \u0111\u1ea7u ti\u00ean l\u00e0m chu\u1ea9n \u0111\u1ec3 l\u00e0m \u0111\u1ebf th\u00e1p, sau \u0111\u00f3 t\u00ednh to\u00e1n b\u1eb1ng c\u00e1ch c\u1ed9ng t\u1ed5ng 2 s\u1ed1 \u0111\u1ee9ng c\u1ea1nh nhau s\u1ebd \u0111\u01b0\u1ee3c d\u00e3y th\u1ee9 2. Ti\u1ebfp t\u1ee5c cho \u0111\u1ebfn khi t\u1ea1o th\u00e0nh tam gi\u00e1c Pascal. Tuy nhi\u00ean m\u1ed7i c\u00e1ch t\u00ednh s\u1ebd c\u00f3 m\u1ed9t ph\u01b0\u01a1ng ph\u00e1p ri\u00eang kh\u00e1c nhau, c\u1ee5 th\u1ec3 nh\u01b0 sau:<\/p>\n
T\u00ednh l\u00f4 \u0111\u1ec1 theo quy lu\u1eadt Pascal theo gi\u1ea3i \u0111\u1eb7c bi\u1ec7t v\u00e0 gi\u1ea3i nh\u1ea5t<\/strong><\/h3>\n
\u00c1p d\u1ee5ng c\u00e1ch n\u00e0y cho l\u00f4 \u0111\u1ec1 mi\u1ec1n B\u1eafc, ng\u01b0\u1eddi ch\u01a1i s\u1ebd l\u1ea5y 5 s\u1ed1 c\u1ee7a gi\u1ea3i \u0111\u1eb7c bi\u1ec7t k\u1ebft h\u1ee3p v\u1edbi 5 s\u1ed1 c\u1ee7a gi\u1ea3i nh\u1ea5t c\u1ee7a ng\u00e0y h\u00f4m nay \u0111\u1ec3 t\u00ednh cho ng\u00e0y h\u00f4m sau.<\/p>\n
V\u00ed d\u1ee5: Ng\u00e0y 30\/10\/2024 k\u1ebft qu\u1ea3 x\u1ed5 s\u1ed1 mi\u1ec1n B\u1eafc v\u1ec1:<\/p>\n
Gi\u1ea3i \u0111\u1eb7c bi\u1ec7t l\u00e0 23567<\/p>\n
Gi\u1ea3i nh\u1ea5t l\u00e0 32879<\/p>\n
\u0110\u1ea7u ti\u00ean b\u1ea1n s\u1ebd gh\u00e9p c\u00e1c ch\u1eef s\u1ed1 trong 2 gi\u1ea3i v\u1edbi nhau, s\u1ebd \u0111\u01b0\u1ee3c d\u00e3y s\u1ed1 l\u00e0m \u0111\u1ebf th\u00e1p: 2356732879.<\/p>\n
Ti\u1ebfp theo, \u00e1p d\u1ee5ng quy lu\u1eadt Pascal t\u00ednh l\u00f4 \u0111\u1ec1 theo quy lu\u1eadt Pascal l\u1ea5y 2 s\u1ed1 c\u1ea1nh nhau c\u1ed9ng l\u1ea1i v\u1edbi nhau n\u1ebfu t\u1ed5ng l\u1edbn h\u01a1n 10 th\u00ec l\u1ea5y s\u1ed1 h\u00e0ng \u0111\u01a1n v\u1ecb s\u1ebd \u0111\u01b0\u1ee3c h\u00e0ng th\u1ee9 2 c\u1ee7a th\u00e1p.<\/p>\n
\n
- <\/dl>\n
- <\/em><\/dt>\n
- C\u00e1ch t\u00ednh l\u00f4 theo Pascal<\/em><\/dd>\n<\/dl>\n
Cu\u1ed1i c\u00f9ng th\u1ef1c hi\u1ec7n l\u1eb7p l\u1ea1i qu\u00e1 tr\u00ecnh t\u01b0\u01a1ng t\u1ef1 2 b\u01b0\u1edbc tr\u00ean \u0111\u1ebfn c\u1eb7p s\u1ed1 cu\u1ed1i c\u00f9ng, ta c\u00f3 \u0111\u01b0\u1ee3c c\u00e1c k\u1ebft qu\u1ea3: 2+3=5; 3+5=8; 5+6=11 l\u1ea5y 1; 6+7=13 l\u1ea5y 3; 7+3=10 l\u1ea5y 0, l\u1ea5y 1; 3+2=5; 2+8=10 l\u1ea5y 0; 8+7 = 15 l\u1ea5y 5; 7+9=16 l\u1ea5y 6.<\/p>\n
T\u1eeb \u0111\u00f3 ta s\u1ebd c\u00f3 \u0111\u01b0\u1ee3c tam gi\u00e1c Pascal l\u00e0:<\/p>\n
- \n
- 5813015056<\/li>\n
- 394316551<\/li>\n
- 23747106<\/li>\n
- 5011816<\/li>\n
- 512997<\/li>\n
- 63186<\/li>\n
- 9494<\/li>\n
- 333<\/li>\n
- 66<\/li>\n<\/ul>\n
=> C\u1eb7p l\u00f4 b\u1ea1ch th\u1ee7 b\u1ea1n n\u00ean \u0111\u1eb7t c\u01b0\u1ee3c l\u00e0 66<\/p>\n
C\u0103n c\u1ee9 v\u00e0o k\u1ebft qu\u1ea3 \u1edf c\u00f9ng m\u1ed9t v\u1ecb tr\u00ed trong m\u1ed9t gi\u1ea3i<\/p>\n
C\u00e1ch t\u00ednh n\u00e0y s\u1ebd d\u1ef1a v\u00e0o k\u1ebft qu\u1ea3 x\u1ed5 s\u1ed1 ng\u00e0y h\u00f4m tr\u01b0\u1edbc t\u1ea1i c\u00f9ng m\u1ed9t v\u1ecb tr\u00ed gi\u1ea3i, t\u1eeb \u0111\u00f3 b\u1ea1n s\u1ebd ch\u1ecdn ra \u0111\u01b0\u1ee3c m\u1ed9t c\u1eb7p s\u1ed1 d\u1ef1 \u0111o\u00e1n cho ng\u00e0y h\u00f4m sau. Th\u00f4ng th\u01b0\u1eddng c\u1ea7u \u1ed5n \u0111\u1ecbnh s\u1ebd kho\u1ea3ng 4 ng\u00e0y tr\u1edf l\u00ean v\u00e0 kh\u1ea3 n\u0103ng d\u1ef1 \u0111o\u00e1n ch\u00ednh x\u00e1c khi d\u1ef1a v\u00e0o ph\u01b0\u01a1ng ph\u00e1p n\u00e0y t\u01b0\u01a1ng \u0111\u1ed1i cao.<\/p>\n
V\u00ed d\u1ee5: Ng\u00e0y 30\/10\/2024 k\u1ebft qu\u1ea3 x\u1ed5 s\u1ed1 mi\u1ec1n B\u1eafc xu\u1ea5t hi\u1ec7n c\u00e1c c\u1eb7p s\u1ed1:<\/p>\n
- \n
- 26317<\/li>\n
- 32589<\/li>\n<\/ul>\n
D\u1ef1a v\u00e0o \u0111u\u00f4i s\u1ed1 c\u1ee7a c\u00e1c gi\u1ea3i n\u00e0y ta s\u1ebd c\u00f3 c\u1eb7p song th\u1ee7 l\u00f4 \u0111\u1ec3 \u0111\u1eb7t c\u01b0\u1ee3c cho ng\u00e0y h\u00f4m sau l\u00e0 68-86. \u0110\u1ed3ng th\u1eddi d\u1ef1a theo c\u00e1ch soi c\u1ea7u n\u00e0y, ng\u01b0\u1eddi ch\u01a1i c\u0169ng c\u00f3 th\u1ec3 d\u1ef1 \u0111o\u00e1n cho nh\u1eefng ng\u00e0y ti\u1ebfp theo.<\/p>\n<\/article>\n<\/div>\n
th\u1ea7n t\u00e0i ch\u1ed1t s\u1ed1 cao c\u1ea5p <\/span><\/h4>\n
- C\u00e1ch t\u00ednh l\u00f4 theo Pascal<\/em><\/dd>\n<\/dl>\n
- \n
- T\u00ednh l\u00f4 \u0111\u1ec1 theo quy lu\u1eadt Pascal<\/em><\/dd>\n<\/dl>\n
- <\/dl>\n
- <\/dl>\n
- \n
- <\/em><\/dt>\n
\n
N\u1ed9i dung<\/span>[Hi\u1ec3n th\u1ecb]<\/span><\/div>\n